
The Intricacies of
Sizecoding on Linux

 Shiz/WRD PoroCYon/K2

Pushing the interest and boundaries of a
very interesting platform

 Ew, Linux?!

 Ew, Linux?!
Choose one approach to grab the audience’s
attention right from the start: unexpected,
emotional, or simple.

➔ Unexpected
Highlight what’s new, unusual, or
surprising.

➔ Emotional
Give people a reason to care.

➔ Simple
Provide a simple unifying message for
what is to come

← You are here

 Ew, Linux?!
Choose one approach to grab the audience’s
attention right from the start: unexpected,
emotional, or simple.

➔ Unexpected
Highlight what’s new, unusual, or
surprising.

➔ Emotional
Give people a reason to care.

➔ Simple
Provide a simple unifying message for
what is to come

← You can go here

 Ew, Linux?!
People are interested!
What makes Linux interesting?

➔ Libraries!
FFT? Sure!
GLU, Opus, all there!
Rendering? ;-)

h
ttp

://releases.u
b

u
n

tu
.co

m
/1

8
.1

0
/u

b
u

n
tu

-1
8

.1
0

-d
eskto

p
-am

d
6

4
.m

an
ifest

http://releases.ubuntu.com/18.10/ubuntu-18.10-desktop-amd64.manifest

 Ew, Linux?!
People are interested!
What makes Linux interesting?

➔ Libraries!
FFT? Sure!
GLU, Opus, all there!
Rendering? ;-)

➔ Open!
See what your dependencies really
are doing!

 Ew, Linux?!
People are interested!
What makes Linux interesting?

➔ Libraries!
FFT? Sure!
GLU, Opus, all there!
Rendering? ;-)

➔ Open!
See what your dependencies really
are doing!

➔ Universal!
Secretly powers a lot of devices,
lots of opportunities!

Linux prod count:

 ?

Linux prod count:

 barely 1%
(as per Pouet)

WHAT’S WRONG?

OFFICIAL™ DEMOPARTY SURVEY

LACK OF TOOLING
1

LACK OF INFO
2

PRECONCEPTIONS?

3()

Revision party quotes

“I’m giving up on
this piece of shit
VST, I’ll just do
Famitracker
instead”

“Linux sucks!
But every OS
sucks.”

“I wouldn’t
even know
where to
start...”

Quotes for illustrative purposes only, possibly slightly altered to protect the guilty

systemctl enable linux-prods

rc-update add linux-prods

update-rc.d add linux-prods

chkconfig --add linux-prods

.TOC.

1. Target platform

2. Executable basics
3. Dynamic linking
4. Console to GL
5. Crunching it all down

6. The 𝙁𝙐𝙏𝙐𝙍𝙀 »

Tip

Don’t wait till the end of
the presentation to give
the bottom line.

Reveal your product or
idea (in this case a
translation app) up front.

$ stat /target

➔ Latest Ubuntu 64-bit
 currently: 18.10

➔ Proprietary NVIDIA driver

➔ Default packages only!

 (still a lot)
 libopus, imagemagick, fftw, espeak…

Tip

Don’t wait till the end of
the presentation to give
the bottom line.

Reveal your product or
idea (in this case a
translation app) up front.

Consequences

➔ glibc ld.so (dynamic linker)

➔ no SDL, GLFW, GLUT

➔ 64-bit libraries only
 … no x32 either … :-(

➔ Static linking: forget about it

Tip

Don’t wait till the end of
the presentation to give
the bottom line.

Reveal your product or
idea (in this case a
translation app) up front.

Consequences

➔ But! Lots of interesting packages
already there

➔ Fourier, text-to-speech, text rendering…

➔ Your own discretion what to use and
what not!

➔ Things may *disappear*

➔ apt-rdepends -d
--state-follow=Installed <pkg>
can be used to figure out dependencies!

Loading ELF
➔ ELF headers can be big!

typedef struct {
 unsigned char e_ident[EI_NIDENT];
 Elf32_Half e_type, e_machine;
 Elf32_Word e_version;
 Elf32_Addr e_entry;
 Elf32_Off e_phoff, e_shoff;
 Elf32_Word e_flags;
 Elf32_Half e_ehsize;
 Elf32_Half e_phentsize, e_phnum;
 Elf32_Half e_shentsize, e_shnum;
 Elf32_Half e_shstrndx;
} Elf32_Ehdr;

typedef struct {
 Elf32_Word p_type;
 Elf32_Off p_offset;
 Elf32_Addr p_vaddr;
 Elf32_Addr p_paddr;
 Elf32_Word p_filesz;
 Elf32_Word p_memsz;
 Elf32_Word p_flags;
 Elf32_Word p_align;
} Elf32_Phdr;

typedef struct {
 Elf32_Word st_name;
 Elf32_Addr st_value;
 Elf32_Word st_size;
 unsigned char st_info;
 unsigned char st_other;
 Elf32_Half st_shndx;
} Elf32_Sym;

➔ Who checks these?

Static: kernel
Dynamic: ld.so

Does it need all of this?

nah.
➔ “A Whirlwind Tutorial on Creating Really Teensy ELF Executables for Linux”

https://www.muppetlabs.com/~breadbox/software/tiny/teensy.html
➔ Both kernel and ld.so don’t care about every field!

Overlap! Compression! Omission!

$ readelf -a ./test
 Class: unknown: 31
 Data: unknown: db
 OS/ABI: unknown: b0
...
 Start of section headers: 23378022 (bytes into file)
 Flags: 0x6ebe389
...
 Size of section headers: 32973 (bytes)
 Number of section headers: 60248

$./test
hello world

https://www.muppetlabs.com/~breadbox/software/tiny/teensy.html

Process loading examined
(how do I shot ELF?)

fork()

exec()

System calls!

Kernel decides what happens:
➔ Static binary: kernel parses directly
➔ Dynamic binary: dynamic loader loads binary instead

Check parsing code of either!
➔ Unparsed fields → code (or zeroes)
➔ Parsed but controllable fields (e_entry)

Entry to sizecoding

➔ Default entrypoint:
C runtime library (crt0/crt1.o)

➔ Roll our own! -nostartfiles
➔ Info passed by kernel on the stack

 Stack layout:

 argv[0] = "./test" <----.
rsp-n-m: AT_NULL, 0 |
rsp-n : AT_FOO, bar |
 NULL |
 ... |
 environ[1] |
rsp-48: environ[0] |
 &argv[3] = NULL |
 &argv[2] |
 &argv[1] |
 &argv[0] ----------------'
rsp: argc=3

Stack not aligned by default!

Required by SSE or segfault
1-byte trick: push rax

➔ Manual system calls (int 0x80/syscall/swi #0)
➔ Graphics: /dev/console, /dev/vcsa, fbdev

https://www.pouet.net/prod.php?which=3696
➔ Sound: device files, ioctl(), write()

nah actually, just pipe to /usr/bin/aplay

https://www.pouet.net/prod.php?which=3696

Meet Marcos.

➔ Serious programmer
➔ Runs a Windows shop
➔ Doesn’t know dynamic linking
➔ Wants to learn Linux sizecoding

Story for illustration purposes only

Marcos just wants to use GL.

What he needs is…

Dynamic
Linking

...but he’s heard that’s hard.

What makes dynamic
linking so heavy?

typedef struct {
 Elf64_Word st_name;
 unsigned char st_info;
 unsigned char st_other;
 Elf64_Section st_shndx;
 Elf64_Addr st_value;
 Elf64_Xword st_size;
} Elf64_Sym;

➔ Dynamic linker (PT_INTERP)
➔ Needed libraries (DT_NEEDED)
➔ All symbols, verbatim
➔ PIC and relocation headers
➔ Support headers

$ cc -Os -o hello hello.c && strip hello
$ ls -l hello
-rwxr-xr-x 1 mark mark 14312 Apr 20 09:58 hello

What makes dynamic
linking so heavy?

Relocation: dynamic linker instruction to patch an
executable in-memory

Everytime an instruction accesses a symbol.
This scales absolutely terribly.

GOT: global offset table, structure at the start where
all resolved symbols are put once
PLT: procedure linkage table, small code stubs that
jump to addresses in the GOT

typedef struct {
 Elf32_Addr r_offset;
 Elf32_Word r_info;
} Elf32_Rel;

typedef struct {
 Elf32_Addr r_offset;
 Elf32_Word r_info;
 Elf32_Sword r_addend;
} Elf32_Rela;

ld.so cares more :(

➔ Need dynamic linker to do anything at all
➔ Extremely minimal headers become hard
➔ Implementations like bbgl non-standard

Solution

➔ Nobody said we had to use ld.so all the time!
➔ Minimal but barely-satisfying headers to just

have ld.so load our binary and dependencies
➔ Do everything else ourselves, no more

Elf_Sym/Elf_Rel headers and extra sections!

Import-by-hash!

Prior art

➔ bold
http://www.alrj.org/pages/bold.html

Paved the way for this approach!
Processes relocations manually
Not portable
Broken due compiler change :-(

$ ld ./test
Dynamic section at offset 0xe0 contains 6 entries:
 Tag Type
Name/Value
 0x0000000000000005 (STRTAB) 0x10164
 0x0000000000000001 (NEEDED) Shared
library: [libGL.so.1]
 0x0000000000000001 (NEEDED) Shared
library: [libgtk-3.so.0]
 0x0000000000000001 (NEEDED) Shared
library: [libgobject-2.0.so.0]
 0x0000000000000001 (NEEDED) Shared
library: [libc.so.6]
 0x0000000000000006 (SYMTAB) 0x0

➔ dnload
https://github.com/faemiyah/dnload

Portable!
Includes GLSL minifier
Own full linking step
Very intrusive
Hardcoded list of known symbols
Input is (C/C++) source, not object files
Was until recently broken on Linux

http://www.alrj.org/pages/bold.html
https://github.com/faemiyah/dnload

introducing smol
simple/shoddy/smart minsize-oriented linker

https://github.com/Shizmob/smol

simple
portable

generic
smaller

simply replace your ld step with smold
wraps GNU ld, loader code portable to any ELF platform
feed it .o files from any language, integrate it how you want
uses custom hash-based import system, no STRTAB/SYMTAB

1. scan input *.o files for
unresolved symbols

readelf & scanelf to the rescue!

2. resolve symbols
create hash symbol table

we have all the required flags!

3. create minimal new header
attach loader, do final link

custom linker script for efficiency

[light side]

idea: obtain dynamic linker’s own state
and abuse it for symbol resolution

➔ DT_DEBUG section, offset 0x4
 meh, extra sections

➔ leak from _dl_start_user()

poke ld.so state, obtain library
symbol hash arrays for free!

[dark side]

x86_64: own mini-PLT+GOT

x86: E9 D00DBEEFloader stub ~200 bytes

jump! hash replaced by relative address
 PLT is GOT

Other small tricks

➔ PT_INTERP:
do we actually need it?
$ /lib64/ld-*.so ./x

➔ Sections? Never heard of ‘em!
one giant RWX übersection

➔ argc/argv/envp
not passing them saves bytes!
bring your own environment

Speaking of small tricks...

 COMPRESSION.xz

Everyone uses
shell droppers

00000000 |cp $0 /tmp/M;(se|
00000010 |d 1d $0|lzcat)>$|
00000020 |_;$_;exit.].....|
00000030 |........?.E.p..r|
00000040 |.....tv:~J..T.^.|
00000050 |..J;l....!I.:N..|
00000060 |".... c.5>.K....|
00000070 |8.6~.h.>...9..,.|
00000080 |............i;"?|

~42 bytes overhead

But they suck.➔ Touch the file system
➔ Ewww, sh?!
➔ LZ compression sucks (for x86):

8d3d1c060001 lea edi, [0x100061c]
8b2db8000001 mov ebp, [0x10000b8]
8b6d04 mov ebp, [ebp + 4]
8b6d0c mov ebp, [ebp + 0xc]
8b7508 mov esi, [ebp + 8]
ad lodsd eax, [esi]
83f805 cmp eax, 5
75fa jne 0x1000102

Attempt to fix #1:

Fishypack, vondehi
➔ Really small decompression stub (asm)
➔ Does everything in-memory (memfd_create)
➔ A bit larger: ~160 bytes
➔ Still LZ (uses gzip/xz)

https://gitlab.com/PoroCYon/vondehi

https://gitlab.com/PoroCYon/vondehi

https://github.com/negge/xlink

Attempt to fix #2:

XLINK
➔ PAQ1-based Arithmetic Range Coder
➔ Sparse n-gram model → good for x86!
➔ No kkrunchy “instruction stream

splitting”; use general approach

Currently DOS-only...
 Expect more soon!

See also: LCA2019, “Executable Code Golf”

https://github.com/negge/xlink

Compiler voodoo
Telling gcc/clang to behave when you don’t want to go 100% ASM

-O2/-Os -march=haswell -ffast-math

-flto -fuse-linker-plugin
-fno-unwind-tables
-fno-asynchronous-unwind-tables
-ffunction-sections -fdata-sections

-no-pie -fno-pic -fno-pie -fno-plt
-fno-stack-check -fno-stack-protector
-fomit-frame-pointer

Compile

-march=haswell -Wl,-i

-flto -fuse-linker-plugin
-ffunction-sections -fdata-sections
-Wl,--gc-sections

-no-pie -fno-pic -fno-pie -fno-plt
-nostdlib -nostartfiles

Link

Output: another object file

Now we have all the ingredients

Road to GL

Linking to GL: GetProcAddr

… or use libglvnd, link as usual

Attempt #1

X11+GLX
https://github.com/blackle/Linux-OpenGL-Examples: xlib-opengl.c

xlib sucks
Verbose API, brittle, GLX stuff

https://github.com/blackle/Linux-OpenGL-Examples/blob/master/xlib-opengl.c

Attempt #1.1

X11+EGL

This still sucks.
EGL can sometimes be worse!

More compatible than GLX!
Less strict about the window state!

Attempt #2
...
libgstreamer1.0-0:amd64 1.14.4-1
libgtk-3-0:amd64 3.24.1-1ubuntu2
libgtk-3-bin 3.24.1-1ubuntu2
... ubuntu-18.10-desktop-amd64.manifest

gtk_gl_area_make_current(gtk_gl_area_new());

We have a GL context!

https://github.com/blackle/Linux-OpenGL-Examples: gtk-opengl.c

https://github.com/blackle/Linux-OpenGL-Examples/blob/master/gtk-opengl.c

sound, (unoptimized) shader, no cursor, 64-bit

~2kb
smol + vondehi + lzma

Go make an intro!
Lots of optimizations are still possible, this is only the beginning

We greet
auld / alrj / blackle / breadbox / Calodox
 faemiyah / gib3 & tix0 / las / leblane
 parcelshit / PWP / Team210 / unlord / yx

Questions?

Shiz/WRD
/dev/by-row/15
hi@shiz.me
twitter.com/dev_console

PoroCYon/K2
/dev/by-row/20
no social media
just IRC

github.com/Shizmob/liner

#lsc on IRCNet

